Resumo 1º teste Tecnologias dos Alimentos para Animais

Definições

Alimentos compostos para animais- misturas de matérias-primas, com ou sem aditivos, destinados à alimentação animal por via oral.

Matérias-primas para alimentação animal- produtos de origem vegetal ou animal, derivados da sua transformação industrial, e substâncias orgânicas ou inorgânicas, destinados a ser utilizados na alimentação animal, quer sem transformação (alimento dado no seu estado natural), quer após transformação (expansão, granulação, etc).

Tecnologia dos alimentos compostos- Tratamento, combinação e mistura de diferentes matérias-primas que irá satisfazer todos os requisitos nutricionais dos animais, com exceção da água.

Panorama da Indústria

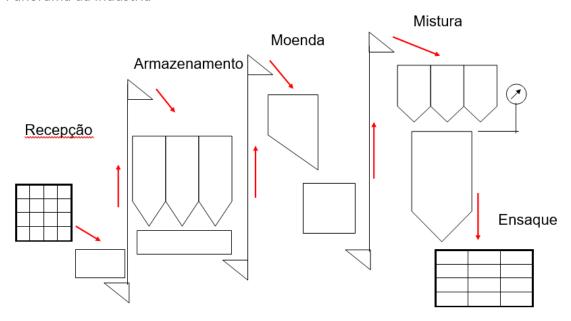


Diagrama de uma fábrica de alimentos compostos. As matérias-primas ou alimento acabado anda para cima e para baixo em altura, para usufruir da gravidade, poupando-se energia.

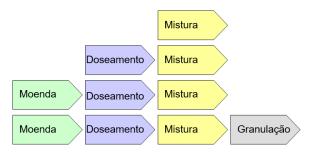
Silos de armazenamento são utilizados para albergar as matérias-primas utilizadas nas fábricas de rações como macro ingredientes (milho, bagaço de soja, trigo, bagaço de girassol). Líquidos precisam de silos estanques.

Fatores que levaram ao crescimento da indústria de alimentos compostos

- Nutrição
- Matérias-primas
- Formulação
- Comércio de matérias-primas
- Tecnologias de fabrico

Moenda: serve para aumentar a digestibilidade e a homogeneidade

Tripolifosfato de sódio- Serve para tratar o tártaro.


Aglutinação com **óleos e melaços** para evitar que os últimos animais tenham acesso apenas á farinha. Gordura -> precisa de sofrer uma pré-digestão com ácidos.

Carbonato de cálcio na muela- ajuda a triturar os alimentos

Extrusão: pressão e temperatura controladas

Coesão do granulado → teste de durabilidade dos grânulos

Operações fundamentais

Receção -> Pesagem -> Armazenamento -> Moenda -> Mistura -> (granulação/expansão) -> Ensaque

A indústria de alimentos compostos serve a produção animal

- Fornece alimentos completos com os nutrientes necessários
- Prepara suplementos e/ou pré-misturas para suplementar os cereais que os produtores dispõem.
- Oferece os alimentos em formas facilmente utilizáveis pelos produtores. (Farinha, grânulo, tacos, migalha).

Alimentos compostos em Portugal			
Aves	44%		
Bovinos	23%		
Suínos	22%		
Outros	11%		

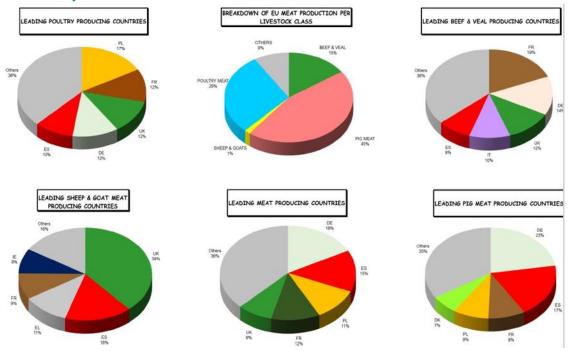
- A produção de alimentos para animais corresponde a 12% do total do volume de Negócios da Indústria Agro-Alimentar
- Dentro das Empresas Agro-Alimentares, o alimento para animais corresponde a 1,2%
- Cerca de 3,8% do Emprego na Indústria Agro-Alimentar é de fabrico de rações

Portugal

Evolução da Produção de Alimentos Compostos

- As aves foram o que mais subiram
- Os suínos têm diminuído
- Os bovinos continuam constantes
- No geral continua constante

Preços Médios dos Alimentos Compostos


Tipo de Alimento - Fase	Apresentação						
Pintos para Carne - Crescimento	Farinha	400,04	463,20	502,79	542,00	515,40	508,67
Frangos para Carne - Acabamento	Farinha	398,96	463,03	500,76	540,87	515,99	509,25
Pintos para Postura	Farinha	360,14	421,05	452,98	485,35	454,92	448,42
Frangas Recria	Farinha	330,32	389,10	416,18	443,20	417,17	405,67
Galinhas Poedeiras	Farinha	349,94	417,11	451,20	490,14	464,54	454,67
Galinhas Reprodutoras	Farinha	351,88	418,58	430,75	436,58	404,57	369,67
Perús Iniciação	Granulado	457,16	516,96	563,39	571,37	578,07	580,83
Perús Crescimento	Granulado	442,35	504,18	537,81	582,64	526,32	551,67
Perús Crescimento - 2.ª Fase	Granulado	434,17	498,88	533,12	573,06	546,03	542,67
Perús de Engorda	Granulado	417,77	478,68	517,53	555,73	529,66	526,67
Patos de Engorda	Granulado	334,63	396,50	389,83	400,50	405,13	401,00
Leitões Pré-Starter	Granulado	638,23	681,73	742,18	775,88	745,19	737,67
Leitões até 20 Kg	Farinha	488,48	548,20	583,33	609,34	579,56	570,75
Porcos em Crescimento	Farinha	387,47	448,52	476,95	496,09	474,45	466,67
Porcos de Engorda	Farinha	373,01	431,11	470,10	503,56	479,37	480,25
Porcas em Gestação	Farinha	315,76	375,90	402,60	425,87	395,80	386,58
Porcas em Lactação	Farinha	336,54	396,62	425,21	450,33	421,68	411,67
Vitelos até 3 meses	Granulado	361,78	422,60	453,48	485,48	461,56	452,67
Novilhos em Recria	Farinha	317,35	376,89	408,78	435,27	403,43	397,42
Novilhos em Engorda	Farinha	314,30	3/3,88	401,77	423,36	388,53	381,08
Vacas Leiteiras	Farinha	348,80	408,88	443,97	471,85	446,39	442,50
Borregos de Engorda	Granulado	345,22	401,47	431,64	458,04	430,05	428,67
Coelhos de Engorda	Granulado	346,35	401,07	433,58	462,19	443,99	436,58

Fábricas de alimentos compostos

- Fábrica de maior dimensão (8 a 10 fábricas) produzem mais de 50% do total das rações.
- Fábrica de tamanho médio (50 fábricas)
- Fábricas pequenas (60 fábricas)

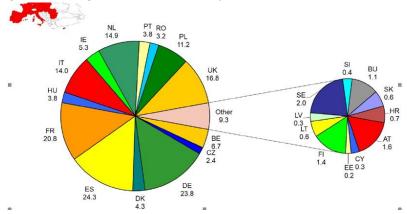
Panorama da Indústria de Alimentos Compostos União Europeia

Produção animal

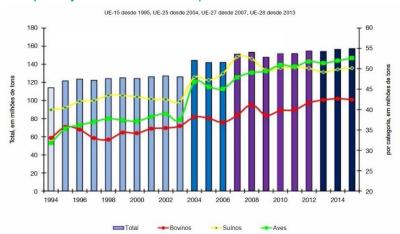
Evolução da produção animal

A produção de carne de suíno foi o que subiu mais, seguido das aves

A produção de bovino continua constante

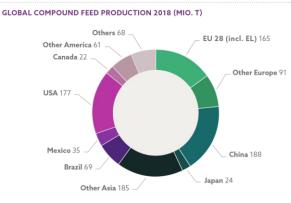

Fontes de Aprovisionamento da Alimentação Animal (milhões de tons)

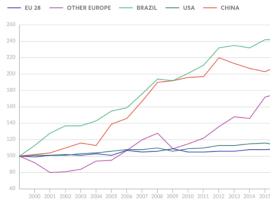
	Milhões de ton
Forragens	253
Alimentos compostos	158
Cereais produzidos na exploração	51
Matérias-primas adquiridas	38


Produção de Alimentos Compostos

	%
Aves e ovos	33,7
Suínos	31,8
Bovinos	26,8
Outros	6,9
Alimentos de aleitamento	0,8

Distribuição da Produção de Alimentos Compostos


Evolução da produção de alimentos compostos



- Espanha: principal produtor de alimentos compostos
- PAT: proteínas animais transformadas (farinha osso, carne)
 - o A carne e ossos são apropriados para consumo humano;
 - o tecido do SNC e digestivo não vão para PAT sofrendo um tratamento térmico.
 - Devemos evitar o canibalismo (farinha osso para peixes e farinha de peixe para suínos).
- Emulsionantes: tornar as gorduras mais disponíveis.
- Fitases: cortam e permitem uma menor utilização de fósforo.
- **Melaço:** maior palatibilidade; funciona como ligante.

Panorama da Indústria de Alimentos Compostos no Mundo

2018 GLOBAL ANIMAL FEED PRODUCTION IS CA.1.085 BILLION TONN EVOLUTION OF GLOBAL COMPOUND FEED PRODUCTION (INDEX 100 = 1) WORTH OVER \$400 BILLION

Source: IFIF / FEFAC

Million metric tons

PROTEIN TYPE	2018	2019°	VAR.
BOVINE	71.3	72.3	1.3%
POULTRY	124.6	130.5	4.7%
PIGS	120.7	110.5	-8.5%
OVINE	15.3	15.4	0.8%
MILK	840.5	852.0	1.4%

WORLD PROTEIN PRODUCTION 2018 / 2019

Source: FAO Global Food Outlook November 2019 / *2019 FAO forecast

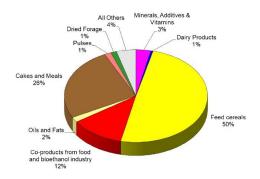
Matérias-Primas em Portugal

Estrutura de consumo de matérias-primas em Portugal

	%
Cereais	57,4
Sêmea/Bagaços	22,5
PSC	3,2
Diversos	16,8

Cereais > Sem/bag > PSC > diversos

Evolução da importação das matérias-primas em Portugal (Ton)


Produtos	2009	2010			2013	2014		Principal (% d	Origem e Valor)
Mandioca	1 310	1 252	1 613	994	1 361	926	645	Espanha	69,3
Trigo Forrageiro	1 595 886	1 505 230	1 256 236	1 399 773	1 075 542	1 243 089	1 275 576	França	43,5
Cevada Forrageira	446 959	421 892	334 268	220 832	240 115	276 761	297 586	Reino Unido	40,2
Aveia Forrageira	12 027	13 005	15 562	10 306	12 826	10 883	11 658	Espanha	72,7
Milho Forrageiro	1 309 383	1 366 624	1 588 221	1 668 875	1 633 843	1 769 178	1 801 096	Ucrânia	43,0
Sorgo Forrageiro	2 679	3 896	23 407	4 044	4 539	5 250	4 623	Espanha	72,4
Soja (Grão)	898 656	872 123	642 235	610 364	798 447	734 822	787 131	Brasil	58,2
Colza (Grão)	168 849	244 348	252 120	187 931	134 695	311 434	337 344	Ucrânia	55,1
Girassol (Grão)	65 794	138 271	243 587	286 439	307 084	245 133	235 112	Roménia	48,2
Farinha de Luzerna	21 360	29 336	25 080	36 902	35 215	25 243	37 211	Espanha	99,9
Gorduras Animais	988	512	900	1 053	8 727	3 675	14 573	Espanha	99,2
Melaço	55 671	58 350	61 247	60 773	68 827	64 690	48 204	Egipto	73,2
Glúten Feed de milho	0	16 200	63 598	24 136	49 959	61 698	36 768	EUA	71,1
Farinha de Carne	559	2 631	817	605	1 365	1 137	896	Espanha	99,7
Farinha de Peixe	4 675	4 840	5211	5 582	5 054	4 045	2 507	Espanha	99,9
Bagaço de Soja	195 005	198 195	253 055	217 300	100 194	145 287	103 089	EUA	52,2
Outros Bagaços (1)	172 657	180 980	279 088	234 277	210 722	301 696	1 826 002	Espanha	45,5
Polpa de Beterraba	4 449	9 023	6 247	20 914	8 146	5 640	10 174	Espanha	97,4
Bagaço de Frutas	45 887	29 736	30 735	30 681	16 946	13 731	14 912	Espanha	97,4
Sub-Prod. Cerveja	477	11 238	41 168	5 149	6 937	12 527	3 664	Vietname	71,1

Preços médios de matérias-primas (€/Ton)

11000	incuios	ue mater	ido priir	143 (5) 1	011)						
2019	Janeiro	Fevereiro	Março	Abril	Maio	Junho	Julho	Agosto	Setembro	Outubro	Novembro
Alfarroba	164,00	164,00	164,00	164,00	164,00	164,00	164,00	164,00	164,00	164,00	164,00
Bagaço de Colza	255,00	255,00	250,00	239,00	239,00	237,00	237,00	237,00	215,00	215,00	215,00
Bag.Girassol 28-30%	218,00	210,00	205,00	185,00	185,00	185,00	185,00	185,00	175,00	170,00	175,00
Bag.Palmiste "Expeller"	170,00	175,00	165,00	153,00	153,00	150,00	148,00	150,00	154,00	170,00	175,00
Bag. de Soja 42	-	=	=	-	-	-	-	-	-	-	=
Bag. de Soja 44	342,00	327,00	325,00	315,00	305,00	320,00	320,00	315,00	310,00	305,00	310,00
Cevada	218,00	215,00	215,00	200,00	200,00	190,00	190,00	175,00	180,00	185,00	185,00
Fosfato Dicálcico	480,00	480,00	480,00	480,00	480,00	480,00	480,00	420,00	420,00	420,00	420,00
Luzerna (16-17%Prot.)	175,00	175,00	176,00	176,00	176,00	178,00	178,00	178,00	178,00	178,00	178,00
Melaço de Beterraba	160,00	160,00	160,00	160,00	160,00	165,00	165,00	165,00	165,00	165,00	165,00
Milho	175,00	172,00	173,00	170,00	174,00	174,00	174,00	175,00	170,00	173,00	175,00
Sal Marinho	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00
Sêmea de Arroz											
Sêmea de Trigo	185,00	190,00	185,00	170,00	170,00	165,00	165,00	165,00	160,00	171,00	170,00
Soja Integral	370,00	370,00	380,00	380,00	365,00	350,00	365,00	355,00	370,00	375,00	375,00
Trigo Forrageiro	215,00	222,00	215,00	208,00	208,00	200,00	185,00	180,00	180,00	196,00	197,00

União europeia

Alimentos consumidos na UE

Matérias-primas-Receção

Primeira coisa a fazer é rececionar as mp individualmente, que são categorizadas pelo international feed nummber, que as separa pelas suas categorias.

- 1. Fibras alimentares, forragens;
- 2. Pastagens;
- 3. Silagens;
- 4. Alimentos que vão ser fontes de energia;
- 5. Alimentos que são fontes de proteína;
- 6. Suplementos minerais;
- 7. Suplementos vitamínicos;
- 8. Aditivos que não têm carácter nutritivo.

Mp que são mais utilizadas na produção de alimentos compostos estão nas categorias 4, 5, 6, 7 e 8.

Algumas matérias-primas pertencentes à categoria 4

- Milho
 - Há milho partido que deixa acessível o endosperma, podendo haver contaminação fúngica-> micotoxina.
 - O Normalmente, com o milho, vêm outros grãos misturados.
- Cevada
 - o contém os polissacáridos não amialácidos (beta-glucanos), que são matérias fibrosas difíceis de digerir, sendo necessário aplicar às rações enzimas exógenas.
- Aveia
- Polpa de citrinos
- Mandioca
- Melaços
- Trigo

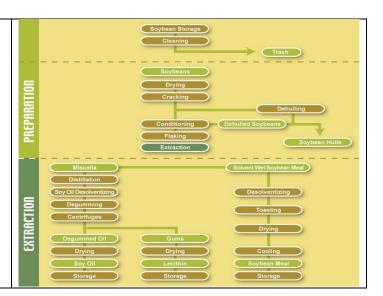
Melaços

Melaço de Beterraba

- Subproduto da indústria açucareira de alto valor energético
- Líquido viscoso de cor escura e muito doce

Características do Melaço

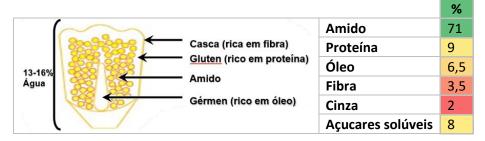
- Apresentam-se na forma líquida ou desidratada,
- Palatibilidade elevada
- Fonte elevada de energia facilmente utilizável pelos animais
- Contém pelo menos 46% de açúcares
- Utilização de 2-5% nas rações granuladas como aditivo de sabor e como agente ligante
- Valores superiores a 8-10% podem causar acumulações nos misturadores.


Vantagens	Desvantagens
 Aumenta a palatabilidade Diminui o risco de poeiras Permite uma melhor ligação dos ingredientes da ração Altamente digestível 	 Problemas de manuseamento Efeito laxativo a níveis elevados

Algumas matérias-primas pertencentes à categoria 5

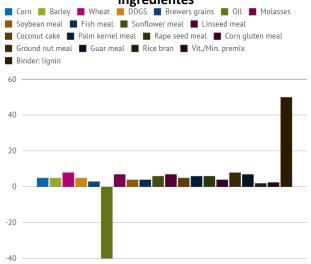
- Bagaço de soja
 - o separa-se por densidade
 - o normalmente não vem na forma de grão porque o que se usa é o bagaço.
- Bagaço de girassol
- Corn gluten feed
- Farinha de carne
- Farinha de peixe

Bagaço de soja


- Principal fonte proteica
 - 1- Limpeza das sementes
 - 2- Secagem
 - 3- Partir as sementes superficialmente para que a casca se liberte que podem ser aproveitadas (soybean hulls) para a alimentação animal, sendo ricas em fibra
- 4- Extração do óleo, o que dá origem ao bagaço (proteína)

Corn Gluten Feed

- Sub-produto da indústria de extração do amido do milho
- Resulta da parte remanescente do grão de milho após a extração de grande parte do amido e do gérmen.


Composição do Grão de amido

Outras matérias-primas...

- Soja integral (full-fat soy)
- Sementes de algodão
- Sêmea de trigo- teor em fibra altíssimo (somente ruminantes conseguem degradar)
- Folhelho da uva
- Destilados de milho (DDGS)

Índice de qualidade do granulado de diferentes ingredientes

Influência das matérias-primas sobre o desempenho da granulação

Matéria-prima	Qualidade do granulado	Capacidade da prensa	Abrasividade
Aveia	2	3	7
Bagaço de amendoim	8	6	5
Bagaço de girassol	6	5	5
Bagaço de soja	4	5	4
Cevada	5	6	5
Farinha de peixe	4	7	5
Gordura	-40	50	0
Melaço	7	6	0
Milho	5	7	6
Minerais	2	4	10
Polpa de citrinos	7	3	6
Soja integral	4	8	3
Trigo	8	6	3

Receção de Matérias-Primas

Pode ser feita a partir de:

- Camião
- Caminhos de ferro
- Barco
- Em sacos
- Em caixas

	Margem de erro
Balanças receção	20 kg
Ingredientes	1 kg
Aditivos/premix (vitaminas, AA, sais)	100 ou 10 g

Durante o percurso da matéria prima ao longo da sua transformação, é necessário haver imans para evitar que haja resíduos de alguma peça das máquinas, no produto final. Os imans não apanham alumínio.

Pré-condicionador: ferramenta que introduz vapor (água a 102 °) nas matérias-primas que vai facilitar a extrusão.

INÍCIO DO PROCESSO

- Toda matéria-prima deve ser armazenada num local seguro, seja em silos, armazéns ou sacos, para evitar contaminação e não causar danos à matéria-prima.
- Estes devem ser protegidos do excesso de umidade para evitar a contaminação por fungos que podem produzir micotoxinas que podem causar efeitos nocivos aos animais.
- A análise de micotoxinas é muito importante, antes de receber os caminhões ou vagões dos camiões que transportam os grãos

RECEPÇÃO DE MATÉRIA-PRIMA

- Esta etapa consiste em verificar e analisar as matérias-primas e a documentação que acompanham as cargas, que chegam às instalações.
- São conferidas as quantidades dos produtos que dão entrada na unidade de produção, pela pesagem na báscula.
- Para as matérias-primas definidas, é feita análise laboratorial para assegurar as características analisadas, sendo autorizada a descarga quando o produto cumpra os requisitos.
- Dentro da etapa de receção de Matérias-Primas está inserida a receção de produtos derivados de origem animal.
- À semelhança da receção de todas as outras matérias-primas, este procedimento iniciase na báscula, onde as quantidades são conferidas, assim como toda a documentação anexa à carga.
- Os produtos derivados de origem animal podem ser rececionados em big-bag, ou a granel, desde que transportadas em cumprimento total com as regras de higiene para evitar as contaminações cruzadas entre matérias-primas.

INSPEÇÃO VISUAL

 Inicialmente, é realizada uma inspeção visual para verificar se as matérias-primas não contêm nenhum material contaminante ou foram adulteradas, incluindo uma revisão das características físicas do ingrediente (Densidade, Temperatura, Tamanho, Textura e Umidade)

Pesagem das matérias-primas / camião

- Escala de 20 em 20.
- Óleos: têm de ter 99% gordura.

AMOSTRAGEM

 Posteriormente, um operador experiente coleta amostras de diferentes ingredientes para analisar sua qualidade em laboratório antes de aceitá-los para produção, o que inclui a determinação da composição bromatológica (Proteína, Ácidos gordos, Minerais, Fibra e cinzas)

Obtenção de uma amostra de matéria-prima

- Seguir um esquema de amostragem predefinido
- Obter uma amostra representativa
- Usar os equipamentos próprios de amostragem
- Inspecionar as características organoléticas da amostra no local de recolha
- Preparar a amostra para ser mandada para o laboratório

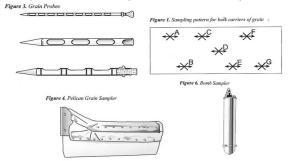
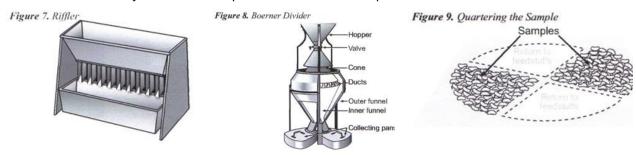
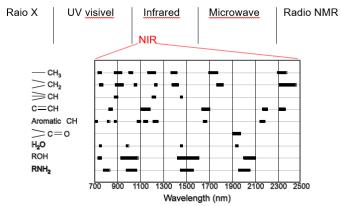



Figura 1: a granel; Figura 3: em sacos;

Figura 6: amostras de óleo

Redução da amostra

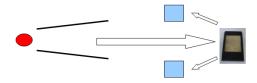
Para obtenção de amostras para análise e amostras para armazenar na fábrica.

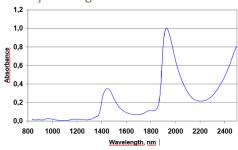

Análises laboratoriais

Umidade	Secagem a 100º (peso inicial-peso final)
Cinzas	Mufla (500º-550º)
Proteína Bruta	Azoto total no método de Kjadhal
Extrato etéreo (GB)	
Fibra bruta	
Extrativos não azotados (ENA)	Açucares, amido e fibra

Deve ser feita uma extração antes do cálculo da gordura (método oxaleto)

Brix	Conteúdo total de sólidos na matéria-prima- Melaço e polpa de tomate				
NALL	Fração das gorduras que não têm valor nutritivo para o animal, só feita para				
MIU	gorduras e deve ser baixo numa gordura de boa qualidade				
Llucasa	Ligada à soja; indicador de um sub-processamento (tratamentos térmicos) em				
Urease	leguminosas para inibir fatores anti nutricionais.				
	Pode-se usar o NIR				
Aflotoxina	(toxinas produzidas por fungos e esta é originada pelo fungo Aspergillus flavus)				
	que é altamente tóxica para os animais.				
Cossinal	É uma toxina que existe no bagaço e nas sementes de algodão (daí não se dever				
Gossipol	usar estes dois ingredientes em grandes quantidades).				


Espectro NIR


- Dá-nos a resposta de 50 a 100g de amostra em 30 seg
- É usado um espetofotometro
- Funciona á base do comprimento de onda do feixe no fim de passar;
- Os novos NIR começam nos 400 nm (imagem 700-2500 nm)
- Pode ser utilizada com óleos.

Absorção de infravermelhos

•Os infravermelhos atravessam a amostra e o espectro absorvido é calculado

Espectro de absorção da água

Calibração NIR

- Espectro + análise convencional = equação de predição
- Espectro + equação de predição = valor predito = valor NIR

Vantagens do NIR

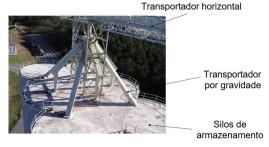
- Rápido
- Económico
- Nenhuns gastos de material de laboratório
- Nenhuns desperdícios químicos

Desvantagens

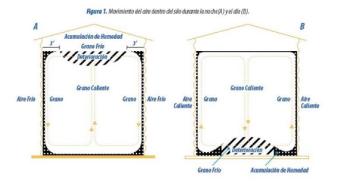
- Preço da máquina
- Calibração

Descarga e armazenamento

A descarga e armazenamento são efetuados consoante o tipo de matéria-prima, conforme os locais identificados na planta de instalações, e de acordo com o fluxograma de fabrico.


Nos locais de armazenamento distinguem-se 4 tipos:

- Matérias-primas em silo,
- Matérias-primas líquidas,
- Matérias-primas em Big-Bag ou saco,
- Matérias-primas refrigeradas.


O principal local de descarga consiste num tegão de matérias-primas a granel, o qual se encontra totalmente fechado, evitando a contaminação dos produtos durante o processo de descarga. Os produtos são encaminhados do tegão para os silos definidos, por processo controlado informaticamente.

Transporte das matérias-primas para serem armazenadas

- Uma vez que o produto tenha sido aceites, devem ser armazenados caso não seja usado imediatamente.
- As condições de temperatura, umidade e ventilação são muito importantes para manter os ingredientes em boas condições.
- Os armazéns devem ser utilizados exclusivamente para salvaguardar os materiais envolvidos no processo e ter áreas definidas e identificadas de acordo com a natureza dos produtos.
- Produtos acabados, matérias-primas e embalagens ou materiais de contentores não devem ser colocados diretamente no chão, para o que devem ser usados paletes.
 Estes devem estar separados da parede e entre si a uma distância mínima de 30 cm.
- Se o grão for armazenado em uma zona de clima quente, precauções especiais devem ser tomadas. É importante considerar as variações de umidade.
- Variações no tamanho das partículas também devem ser levadas em consideração.
- Se o grão estiver muito sujo ou com muitos objetos estranhos, deve ser limpo antes de ser armazenado.
- É fundamental realizar manutenção frequente nos silos (limpeza).

Explosões

Requisitos

Partículas muito finas (farinhas) ex: mandioca

- Uma explosão inicial pode realizar explosões subsequentes/secundárias
- Se houver confinamento, vai haver fricção das partículas
- Ausência de pó pode ser adquirida através de pressão positiva
- Perfil de ácidos gordos serve para ver a origem (animal) da gordura.
- Concentração mínima de pó (> 40 g/m3)
- Carbonato de cálcio é muito abrasivo

Tamanho de partículas (diâmetro)

Grânulo	> 2mm
Farinha	0.42mm e 2mm
Partículas de pó	< 0.42mm (420µm)

ATEX – diretiva que estabelece as prescrições mínimas destinadas a promover a melhoria da proteção, segurança e saúde dos trabalhadores de qualquer fábrica. Trabalhadores estes que estão suscetíveis a serem expostos a riscos derivados de atmosferas explosivas.

Acumulações de pó podem acontecer logo na grelha de receção, na maquinaria que é inevitável tendo que haver sistemas de aspiração nunca existindo acumulações.

Sistemas de transporte

- São sistemas que permitem:
 - o Movimentação de matérias-primas ou alimento acabado
 - Alimentar e debitar produtos das máquinas

Transportador de sem-fim – forma de hélice	Desvantagem: corta e parte os tacos
Tanatas valantas a sintas	Vantagens: não parte o produto acabado que levam
Tapetes rolantes e cintas	Desvantagem: não consegue transportar em altura
Transportadores de arrasto (redlers) -	Desvantagem: leva o produto sempre na mesma
corrente com umas palas	direção e fica sempre algum produto
Transportador oscilante	
Transportadores pneumáticos	Vantagem: não fica resto de produto nenhum
Transporte por gravidade	
Elevador de noras	

A escolha do tipo e tamanho do transportador depende de: Características físicas dos ingredientes (fluidez dos ingredientes (ingrediente fluido os grãos de milho, enquanto uma soja esturdida é menos fluido)); Quantidade ou ritmo do fluxo de ingredientes ou alimento acabado; Distância e elevação; Suscetibilidade de contaminação.

Transporte horizontal (sem fim, redlers, tela)
Transporte vertical (noras)
Transporte em inclinações (sem fim 30°)

Sistemas de transporte na fábrica

O tipo e tamanho do transportador depende de:

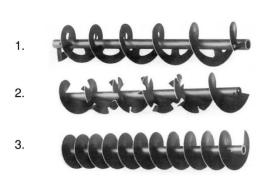
- Características físicas dos ingredientes
- Quantidade ou ritmo do fluxo de ingredientes
- Distância e elevação
- Suscetibilidade de contaminação

Transportes na horizontal / inclinações

Transportadores de sem-fim

Uso perfeito para o transporte e descarga de produtos a granel entre 2 ou mais pontos. Tem um veio central com uma espiral helicoidal em forma de hélice. Comprimento e velecocidade é consoante o necessário pela fábrica e pelo tipo de produtos (mais fluido, velocidades maiores, menos fluido menos rápido).

Muito adaptáveis a vários materiais, mas com certos materiais pode haver algum dano pela fricção entre a hélice e as paredes do tubo.


- Diâmetros mais comuns: 20 a 50 cm
- Fluxo regular até 100 T /h (densidade 0,75T/m3)

- Para transportes horizontais e com inclinação (até 30º)
- Usado principalmente como alimentador de máquinas e extrator de silos
- Custo moderado; boa fiabilidade e fácil manutenção

Desvantagens

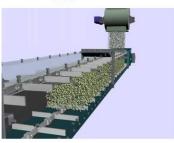
- Baixa capacidade
- Perda de rendimento em elevações- quanto maior o declive mais difícil o transporte
- Quebra de partículas por fricção
- Abrasão das paredes do transportador

- 1. É importante para o transporte de materiais mais pegajosos e viscosos, que têm tendência em aderir à zona de adesão entre a hélice e o veio central, nesta há aberturas logo vai haver menos probabilidade.
- 2. Os cortes e dobras servem para aumentar a agitação do material que está a ser tranportado, serve para misturar os ingredientes de uma forma mais grosseira enquanto estão a ser transportados.
- 3. Tradicional mas as hélices são de curto alcanço, estão muito próximas umas das outras, é usado quando se quer reduzir o ritmo de fluxo de materiais, normalmente quando os materiais são muito fluídos.

Transportadores de arrasto (redler)

Mecanismos de funcionamento de correntes com pás que arrastam o material à medida que avançam pelo tubo.

- Para transporte horizontal, oblíquo ou vertical (raro por causa de perdas).
- Usado para distribuição de materiais em silos, tendo a particularidade de poderem ter umas escovas por debaixo das pás para fazerem a limpeza do sistema ao longo do trasnporte e assim evitar resíduos, contaminações cruzadas e acumulação de material em cantos que levam ao desenvolvimento de fungos e posteriormente de micotoxinas.
- Saídas múltiplas; baixo custo de aquisição e manutenção
- Sem problemas de fricção


Desvantagens:

- Permite sempre contaminação
- Capacidade de carga pouco flexível
- Custo de implantação (mais alto do que em hélice)
- Má movimentação de materiais pegajosos (matérias com por exemplo de mais de 10% de incorporação de gorduras ou óleos).

Em forma de U

En masse

Transportador oscilante

Menos usado nas fábricas de rações.

Consiste em plataformas que oscilam e que fazem com que o material se vá movimentando uniformemente de um lado para o outro. É um transporte muito suave que é vantajoso para materiais abrasivos, que façam muito pó ou que tenham grande tendência para fazer grumos. São utilizados quando se têm materiais muito abrasivos, que façam muito pó e quando se quer movimentar materiais que se quebram facilmente com o transporte.

- Fluxo uniforme
- Transporte de materiais abrasivos
- Operam em silencio
- Baixa energia de funcionamento

Desvantagem

• Débito muito lento

Tapetes rolantes/ cintas

As cintas podem ser lisas ou ter nervuras para aumentar ou diminuir o atrito. Usado principalmente em terminais portuários e para transporte de sacos. <u>Ideal para produtos frágeis</u> (que se esfarelam muito facilmente) ou muitíssimos abrasivos (hard pellet), porque o material <u>está parado (</u>o que se move é a tela), ao contrário dos outros. Elevada eficiência e poucos problemas de contaminação (porque o material não está a ser arrastado, está parado). Os tapetes conseguem transportar os materiais em grandes distâncias a velocidades muito elevadas.

- Para transporte horizontal e inclinado
- Usado principalmente em terminais portuários e para transporte de sacos
- Ideal para produtos frágeis; elevada eficiência e poucos problemas de contaminação

Desvantagens:

- -Produção de poeira (ao ar livre)
- -Manutenção de cintas rigorosa
- -Saída única

Transportadores pneumáticos

- Usado para descargas de navios
- •Insuflação para grandes quantidades
- •Ventilação para pequenas quantidades
- Grande flexibilidade (transporte horizontal, vertical...); ocupam pouco espaço.
- •Alto consumo de energia; ruído.

Desvantagens:

- -Alto consumo de energia
- -Ruido
- -Quebra de grânulos

Transportes na vertical

- Transporte por gravidade
- Transportador pneumático
- Elevadores de noras → mais utilizado
- Transportador sem-fim

Transporte por gravidade

- Exigem desníveis verticais
- Não consomem energia
- Declives e pontos de mudança de direção (eventual ponto de acumulação/retenção de material) exigem conceção apropriada (para ter a certeza que existe fluidez apropriada do material).

Elevadores de noras

Transporte muito eficiente e muito flexível na sua altura (tanto alta como baixa). Débito (quantidade de ingrediente que é debitado da máquina por minuto ou hora) variável.

- Transporte vertical
- Débito variável
- Carregamento no ramo ascendente ou descendente, descarga por gravidade em curva
- Ocupam pouco espaço; versáteis em altura; consomem pouca energia

Débito variável depende da:

- **Velocidade do elevador** (nem muito alta nem muito baixa (alcatruzes muito cheios, logo cai material para fora))
- Densidade dos alcatruzes (recipientes dentro do elevador, tais noras)
- Capacidade dos alcatruzes (quanto maior, maior o débito (controlar a velocidade para consoante a densidade os alcatruzes sejam cheios até o final))
- Eficiência do enchimento (taxa de alimentação do alimento na tremonha)
- Eficiência da descarga (elevador bem desenhado, para a descarga ser completa).

Se a velocidade do elevador for muito elevada, diminui a eficiência de enchimento, de descarga, aumenta os problemas mecânicos e o risco de explosão.

Se as noras forem em z não danifica o alimento

Desvantagens

- Custo e manutenção
- Zonas inferiores suscetíveis de contaminação
- Suscetibilidade a explosões

O que fazer para reduzir explosões:

- Reduzir deslizamentos
- Usar alcatruzes não metálicos
- Reduzir poeiras (sistema de aspiração)

Armazenamento

REQUISITOS PARA ARMAZENAR GRÃOS COM SEGURANÇA

Embora a escolha do design de armazenamento seja ampla, os requisitos essenciais necessários para armazenar grãos com segurança permanecem os mesmos:

- **1- Isolamento de água e animais-** A estrutura de armazenamento deve manter o grão livre de entrada de água, insetos, roedores e pássaros.
- **2- Ventilação-** Se o grão for armazenado com teor de umidade acima dos níveis 'seguros', deve-se tomar providências para arrefecer o grão (pode ser natural ou forçada)
- 3- Desinfestação fácil- A instalação de armazenamento também deve permitir a desinfestação fácil e econômica de grãos em caso de infestação de insetos.
 O valor do grão costuma ser maior que o custo da estrutura em que está armazenado.

Despesas menores na melhoria da qualidade do armazenamento podem, portanto, ser rapidamente recuperadas se as perdas de mercadorias forem reduzidas de forma proporcional

Quebra-se a cadeia das micotoxinas através da diminuição (**em cerca de 12%) de humidade** Silos têm 2 sondas de temperatura

Problemas cereais: insetos

Armazenamento de matérias-primas a granel

- Silos de metal
 - o ocupam menos espaço; mais fácil de construir.
- Silos de cimento
 - Custo elevado é uma desvantagem
 - Condensação é uma desvantagem
- Armazéns
 - Chão está feito
 - Pragas (ratos)

Silos de metal

Vantagens

Boa proteção contra pestes
Carregamento e descarregamento automáticos
Fácil limpeza
Simples controlo de temperatura
Fácil arejamento
Completamente móvel, montam-se e desmontam-se

Inconvenientes

Alto custo

Fraco isolamento contra temperatura ambiental (condensação)

- Quando aumenta a temperatura a matéria prima pode não estar boa;
- A tampa não sela (efeito chaminé)
- Silos expostos ao sol um dos lados fica mais quente. Pode criar material aderido.
- O milho vai-se colando com a condensação.
- Silos ver de 6 em 6 meses.
- Velas antifúngico colocadas no fim de limpo o silo.

Silos de cimento

Vantagens

Bom isolamento contra temperatura exterior Carregamento e descarregamento automáticos Fácil limpeza Simples controlo de temperatura

Inconvenientes

Alto custo Amovível

Armazéns

Vantagens

- Baixo custo
- Flexível uso de espaço

Inconvenientes

- Carregamento e descarregamento pouco eficientes
- Má proteção contra pestes
- Difícil limpeza = não existe, o que gera restos que vão estragar as novas MP
- Difícil controlo de temperatura

Armazenamento de matérias-primas em sacos ou caixas

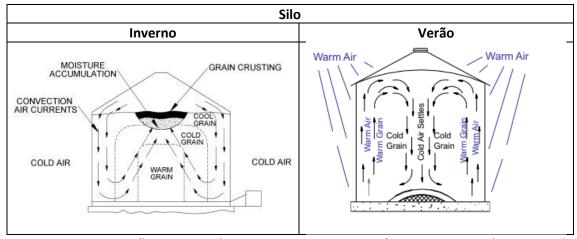
- Armazéns devem impedir entrada de roedores e/ou pássaros
- Construção de cimento
- Produtos medicamentosos em salas separadas e separados por uma porta
- Não devem armazenar nada mais que as mps usadas para o fabrico dos ingredientes composto.
- Sacos devem estar a uma altura do chão em cima de paletes.

Tempo de armazenamento recomendado para milho

		Umidade no milho (%)						
Temp. ºC	18	20	22	24	26	28	30	
-1	648	321	190	127	94	74	61	
2	432	214	126	85	62	49	40	
4	288	142	84	56	41	32	27	
7	192	95	56	37	25	18	14	
10	128	63	37	25	18	14	12	
13	85	42	25	16	12	9	8	
16	56	28	17	11	8	7	5	
18	42	21	13	8	6	5	4	
21	31	16	9	6	5	4	3	
24	23	12	7	5	4	3	2	
27	17	9	5	4	3	2	2	

Quanto maior a temperatura e a humidade menor o período de armazenamento, devido à fácil decomposição pelo desenvolvimento de fungos ou de insetos (larvas de insetos no meio das mps).

Perda de produto durante o armazenamento


- Verificação inadequada
- Gestão inadequada
- Partículas finas
- Qualidade inicial da matéria-prima
- Controlo inadequado de insetos

Sempre que há pó (perdas)

Aw (atividade da água): menor ou igual a 0,6 não há qualquer problema (no petfood menos de 12% de umidade)

Humidade máxima de armazenamento

		Umidade máx (%)
	Para ser vendido na estação a seguir	15
Grão de milho e sorgo	Para ser armazenado menos que 1 ano	14
	Para ser armazenada mais de um ano	13
Soio	Para ser vendido na estação a seguir	14
Soja	Para ser armazenado menos que 1 ano	12
Trigo		13
Grãos pequenos (aveia,	cevada)	13
Girassol	Para ser armazenado menos que 6 meses	10
Gilassui	Para ser armazenado menos que 1 ano	8
Arroz		12

No inverno as mps estão armazenadas a temperaturas maiores à temperatura ambiente, sendo boas isolantes, fazendo com que o cereal ressoe e fique encrostado às paredes frias, havendo a maior parte da condensação no meio.

No verão acontece um pouco o contrário do que se passa no inverno. Os grãos mais frios estão no interior o que vai fazer com que haja um fluxo de ar quente para frio levando a uma acumulação de condensação na parte inferior central do silo. Como no inverno devem existir formas de arejamento e sondas de controlo de temperatura para evitar esta acumulação de humidade.

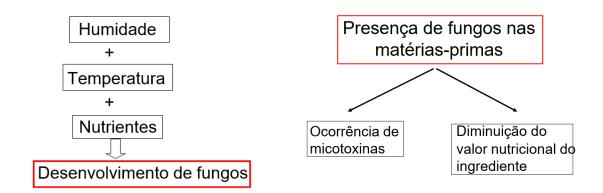
O arejamento impede os problemas de acumulação de humidade e é usado quando uma mp é armazenada por um período grande de tempo.

Arejamento

Previne o encrostamento

Alternativas ao Arejamento

- Escoar o produto rapidamente
- Recircular o produto → trocar de um silo para outro
- Insuflar ar

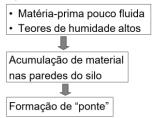

Principais problemas no armazenamento de matérias-primas

- Desenvolvimento de fungos
 - O Aflotoxina B1-> limite máximo legislada leite
- Problema de formação de "ponte"- Matérias primas aderem à zona húmida (formação de "ponte")
- Pragas: insectos, roedores, pássaros
 - Doenças transmitidas por pragas:
 - Gripe das aves (excreções nas matérias-primas)
 - Clamidia e cocsidas (rolas)
 - Roedores → salmonela 2 patogénicos (typhimini e entritidis), outras não fazem mal

Nas aves, fazer análise de fezes, 15-15 semanas, 25 seg

Alteração da qualidade da matéria- prima durante o armazenamento

Desenvolvimento de fungos e produção de micotoxinas


Humidade não inferior a 12-13 %

As cabras não comem alimentos com fungos

Sistemas de monitorização da temperatura

- Importância da monitorização:
- Controlo dos potenciais locais de desenvolvimento de fungos
- Controlo do estado do grão
- Controlo de infestações

Problema da formação de "ponte" em silos

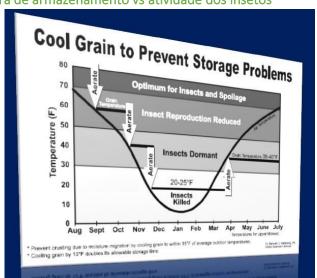
Na zona de inclinação do silo (onde muda o angulo) é onde existem mais acumulações de material. Ao início são acumulações pequenas, mas há medida que o material desce a acumulação aumenta, levando à formação de ponte entupindo o silo e não deixando o material sair.

Formas de evitar a formação de "ponte" em silos

- Descarregador de fundo cónico- igual ao plano á exceção de a base do fundo do silo não ser plana, mas sim cónica
- **Descarregador de fundo plano** plataforma que tem uma hélice que roda à volta do silo e sobre si mesma, varrendo o fundo e enviando a mp para ser transportada por um transportador
- Agitadores (rolos que vão mexer a matéria prima)
- Descarregador vibratório de silo

Pragas durante o armazenamento

- Insetos (Sazonais (verão))
- De infestação interna- passam uma grande parte do seu período de desenvolvimento dentro do grão de cereal, consumindo a sua parte nutritiva
- De infestação externa- preferem alimentos em forma de farinha
- HR ótima (12-14%)
- T^a ótima (21 -27 ^oC)


Fêmea põe 300 a 400 ovos em cada cavidade Larva desenvolve-se internamente (13%HR e 27ºC)

Resolver:

• Pastilhas de fosfina que em contato com o oxigénio libertam gás que vai matar insetos, desaparecendo os resíduos da fosfina em 5 dias.

• **Secador**: 60-70° → acaba com os ovos

Agosto e Setembro é a altura em que há mais insetos, principalmente em cereais praganosos (soja, cevada...)

Temperatura de armazenamento vs atividade dos insetos

Controlo de Infestantes

Deteção e Monitorização através de amostragem Deve-se fazer:

- Deteção (presencia ou ausência de infestantes, tendo em conta o nº de amostras e o tipo de aparelho usado).
- Monitorização (tendência da presença de infestantes ao longo do tempo, que dá uma ideia de como e quando atuar no futuro).

Para fazer uma deteção e uma monitorização boas é preciso fazer uma boa amostragem.

Testes de amostragem:

- mostrador tipo pelicano- para perceber se há uma grande incidência de insetos ou não.
- Ellis Cup- usa-se quando se retiram amostras durante o transporte, tirando a mps em vários pontos de circulação.
- **tubos de amostragem-** para retirar amostras, por ex. quando a mp está dentro do silo, ou uma semana depois ou quando quiser.

Essa amostra é colocada num aparelho de deteção de insetos que vai extrair os insetos e fazer a sua contagem, isto deve fazer-se 2 vezes para garantir que se extraíram todos os insetos.

Se se detetar mais do que 1 inseto por kg de matéria-prima deve-se atuar da seguinte forma:

- Fazer sair o produto mais rapidamente
- Recircular o produto
- Insuflação de ar
- Fosfina
- Desinfestações cautelares (podem-se fazer em qualquer momento para evitar entrada de insetos, especialmente no outono e primavera que é quando há mais probabilidade dos ovos de insetos eclodirem).

Armadilhas

- 1 a 2 armadilhas em silos com menos de 25 toneladas.
- 2 a 3 armadilhas com silos de 25 a 50 toneladas
- 3 a 5 armadilhas em silos com mais de 50 toneladas.
- Temperatura > 18C, verificar armadilha todos os 10 a 14 dias.
- Temperatura < 18C, verificar armadilha de mês a mês.

Controlo de pragas em armazéns

- Inspeções
- Limpeza
- Métodos físicos e mecânicos
 - o Ventilação
 - o Barreiras físicas (redes, portas...)
- Aplicações químicas
- Fumigação (último recurso)

Moenda

Objetivos:

- 1. Melhorar digestibilidade dos nutrientes (aumentar a superfície específica)
- 2. Aumentar homogeneidade da mistura
- 3. Permitir o processo de granulação

1. Na digestibilidade dos nutrientes

Efeito do tamanho das partículas na performance dos suínos

Table 1: Effect of Diet Particle Size on Growth Performance of Nursery Pigs.

	Particle size, microns					
Item	900	700	500	300		
Average daily gain, lb	0.84	0.80	0.85	0.78		
Average daily feed intake, lba	1.29	1.21	1.23	1.19		
Feed efficiency ^b	1.55	1.52	1.46	1.53		
Production rate, tons/hour	4.06	2.84	1.63	0.85		

Adapted from Healy et al., 1994.

No granulado, existem todas as necessidades dos animais.

3 mm: mais digerível e maior a velocidade de passagem.

1,46 seria o valor ótimo.

Farinha de milho excessivamente moída pode causar deslocações de abomaso no caso dos ruminantes; nas porcas pode causar úlceras gástricas.

Mais moídos, implica maior custo.

^{*}Linear effect (P < 0.08); bQuadratic (P < 0.01).

Efeito do tamanho da partícula no IC em suínos

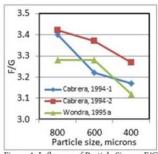


Figure 1: Influence of Particle Size on F/G. Data from 1990's.

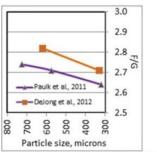


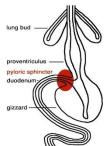
Figure 2: Influence of Particle Size on F/G. Data from 2011 and 2012.

Efeito do tamanho das partículas na performance das porcas lactantes

Effects of Lactation Diet Particle Size on Sow and Litter Performance^a

			Particle size, microns	
Item	1,200	900	600	
Litter size, d 21	9.1	9.0	9.5	
Sow wt loss, lb	23.1	23.1	15.9	
Sow bf loss, in.	.12	.13	.12	
Litter wt, lb	103.4	107.4	111.3	
Litter wt gain, lbb	76.9	80.7	84.2	
Feed intake, lbb	9.23	9.35	9.70	
Diet dry matter digestibility, %	84.2	85.1	86.4	
Ulcer score	1.3	1.4	2.7	
Keratinization score	1.2	2.1	1.5	

aWondra, 1993.


Keratinizada → rija e espessa (pele)

Ter em atenção as úlceras.

Efeito do tamanho da partícula em frangos de carne

- Estimulação da moela
- Melhor digestibilidade da proteína
- Modulação da microflora

20 a 30% de partículas de cereais com 1000 microns (1 mm)

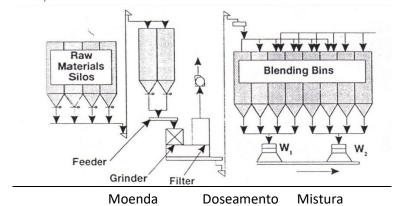
Monogástricos não diminuem o tamanho da partícula → a moela faz isso

2. Na homogeneidade da mistura

Efeito do tamanho das partículas na homogeneidade da mistura

- Tamanho de partícula uniforme
- Tamanho de partículas pequeno em microingredientes
- Mistura de microingredientes em excipiente apropriado: pré-mistura

^bLinear effect of particle size (P < .05).

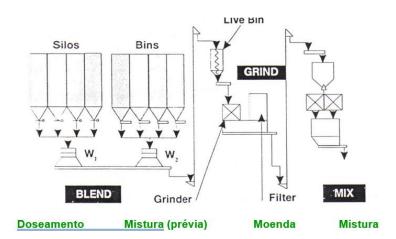

Influência do tamanho das partículas na granulação

- Friabilidade dos grânulos
- Coesão dos granulados
- Mais partículas, mais ligações
- Mais pequenos, maior digestível; mais resistente (mais ligações)
- Brilho (gordura- melaço)

Sistemas de moenda

- Sistema de prémoenda:
 - 1. Moenda (individual)
 - 2. Doseamento
 - 3. Mistura
- Sistema de pósmoenda:
 - 1. Doseamento
 - 2. Mistura
 - 3. Moenda (conjunta)
 - 4. Mistura

Sistema de pré-moenda


Vantagens do sistema de pré-moenda- mais usado na pecuária

- Melhor aproveitamento dos moinhos
- Melhor gestão do tempo
- O tamanho das partículas pode ser controlado
- Funcionamento simultâneo de vários moinhos
- Potência elétrica instalada é inferior
- Micronutrientes vão diretamente para a misturadora

Inconvenientes do sistema de pré-moenda

- Exige um maior número de células intermédias
- Menor flexibilidade no uso de matérias-primas
- Na trituração de matérias-primas mais abrasivas, o moinho sofre um desgaste mais acentuado

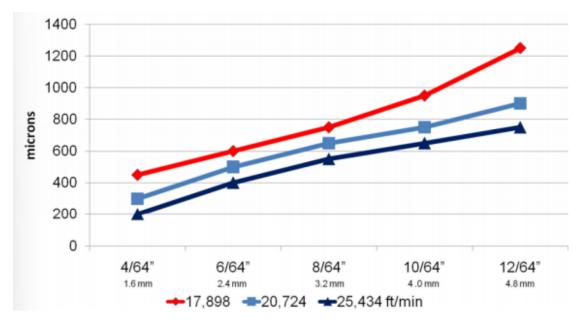
Sistema de pós-moenda- mais utilizado na pet food

Vantagens do sistema de pós-moenda

- Maior flexibilidade no uso de matérias-primas
- Facilita a moagem de matérias-primas difíceis de moer
- Permite uma moenda fina com uma produtividade aceitável
- Evita a existência de células de armazenamento intermédias

Inconvenientes do sistema de pós-moenda

- Afeta diretamente a capacidade produtiva da fábrica
- Requer instalação de uma maior potência elétrica
- O transporte de misturas pode ser mais difícil que o de ingredientes individuais
- A moenda é o moinho


Moinhos

Características e funcionamento do moinho

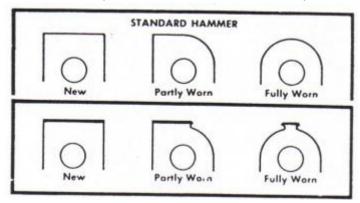
- 1. Velocidade periférica dos martelos
- 2. Distância entre os martelos e o crivo
- 3. Dimensões e número de martelos
- 4. Desgaste dos martelos
- 5. Área aberta do crivo
- 6. Dimensões das perfurações do crivo
- 7. Espessura do crivo (quanto maior a espessura, maior dificuldade na passagem das pequenas partículas, ficando cada vez mais pequena); Maior desgaste → partículas maiores)
- 8. Alimentação do moinho
- 9. Velocidade do rotor

1. Velocidade periférica dos martelos

Efeito da velocidade periférica do martelo e do tamanho do crivo no tamanho da partícula

2. Distância entre os martelos e crivo

12 a 14 mm


3. Dimensões e números de martelos

- Rotor de 1800 rpm
 - o 1 martelo por cada 2,5 a 3,5 cavalos
 - o A=6,4mm B= 6,35cm E=25cm
- Rotor de 3600 rpm
 - o 1 martelo por cada 1 a 2 cavalos
 - o A=6,4mm B= 5cm E=15 a 20cm

4. Desgaste dos martelos

- Características do aço
- Dureza dos ingredientes
- Regulação da alimentação
- Grau de moenda

O milho de leste quebra-se mais facilmente, sendo preciso menor velocidade dos martelos.

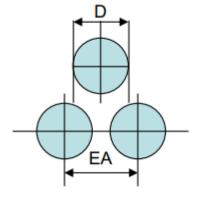
Os martelos começam por ser retangulares e vão fazendo semicírculos perfeitos 1 martelo tem 4 posições para ser utilizado até se gasta Martelo novo- partículas mais pequenas.

5. Área aberta do crivo

Maior abertura do crivo (%), maior será o débito

Moinho (com crivo)

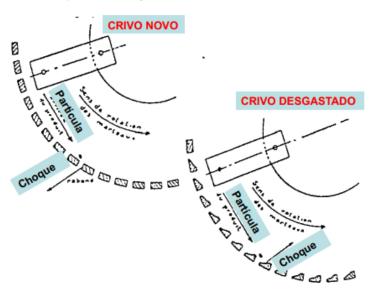
- Pet food- 1 mm
- **Suíno** 3 a 4 mm
- Poedeiras- 12 mm
- Ruminantes- não podem ser menores a 2 mm porque passa direto pelo rúmen

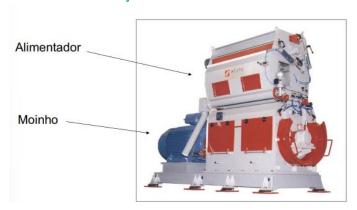

Matriz:

- Se tiver furos a mais, o produto passa rápido e não coze
- Se forem furos a menos, demora muito tempo e cozinha demais

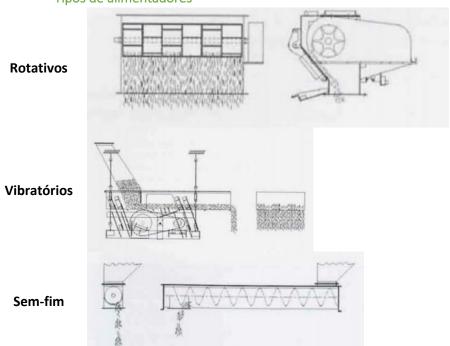
Passa-se a ração por uma peneira para tirar os finos

Para saber o tamanho das partículas, deve-se peneirar com redes de diferentes tamanhos.


% de abertura = D² * 0.907 / EA²


6. Dimensões das perfurações do crivo

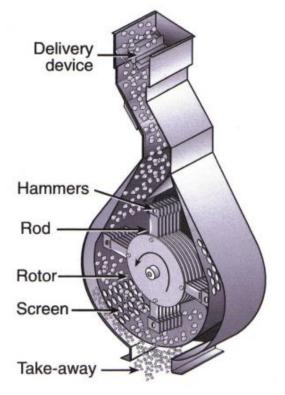
Maior perfuração, maior tamanho da partícula


7. Espessura/desgaste do crivo

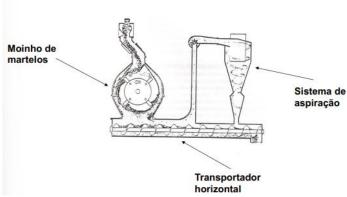
8. Alimentação do moinho

Tipos de alimentadores

9. Velocidade do rotor Tamanho final da partícula em microns


		Crivo						
		2,0 mm	2,5 mm	3,0 mm	3,5 mm	4,0 mm	5,0 mm	6,0 mm
	3000	570	593	612	626	637	647	641
	2900	559	591	620	645	665	695	709
	2800	549	592	630	665	696	745	779
	2700	542	594	643	688	728	798	851
	2600	537	599	658	712	763	852	926
	2500	534	607	675	740	800	909	1003
	2400	534	616	694	769	839	968	1082
	2300	535	628	716	800	881	1030	1163
	2200	539	642	740	834	925	1094	1247
	2100	546	658	766	870	971	1159	1332
Velocidade	2000	554	676	794	909	1019	1228	1420
	1900	565	697	825	949	1069	1298	1511
	1800	578	720	858	992	1122	1371	1603
	1700	593	745	893	1037	1177	1445	1698
	1600	610	772	930	1084	1234	1522	1795
	1500	630	802	970	1134	1294	1602	1894
	1400	652	833	1011	1185	1355	1683	1995
	1300	676	867	1055	1239	1419	1767	2099
	1200	702	904	1102	1295	1485	1853	2205
	1100	730	942	1150	1354	1554	1941	2313
	1000	761	983	1201	1414	1624	2032	2424

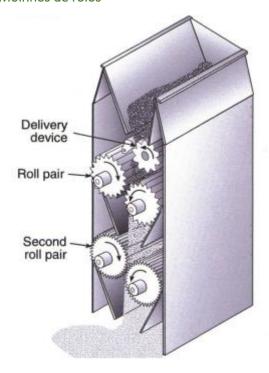
Verificar o tamanho da partícula: peneirar (com peneiras)


Características do produto a moer

- 1. Dureza
- 2. Friabilidade
- 3. Empastamento
- 4. Teor de humidade

Moinhos de martelos

MP vai para o moinho e depois é sugado por um aspirador (filter air), para evitar explusão


Vantagens

- Flexível no tamanho de partículas desejado
- Trabalha com ingredientes friáveis e fibras
- Baixo custo de investimento
- Baixo custo de manutenção
- Regulação simples

Desvantagens

- Uso de energia pouco eficiente
- Gera algum calor
- Gera ruído e pó
- Tamanho das partículas menos uniforme

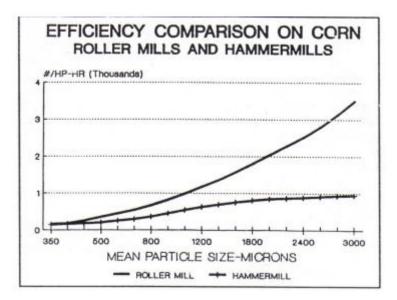
Moinhos de rolos

Tipos de processamento em moinhos de rolos

- Quebra
- Esmagamento
- Produção de migalhas- granulado partido (1º granulado e 2º partir o granulado anterior)
- Produção de flocos (muesli em cavalos)
- Moagem

Moagem em moinhos de rolos

- Eficiência energética
- Preocupação com a qualidade do produto
- Preocupação com o ambiente


Vantagens

- Principal: processo mais amigo da matéria-prima e partículas mais homogéneas
- Uso de energia muito eficiente
- Uniformidade granulométrica do triturado
- Gera pouco ruído e pouco pó

Desvantagens

- Difícil processamento de fibras (bagaço de girassol, casca de aveia) elásticas
- Custo inicial elevado
- Custo de manutenção elevado
- Menos práticos, havendo um difícil controlo do tamanho da partícula
- Dificuldade em alterar a dimensão da moenda

Eficiência energética entre os moinhos de martelos e de rolos

As farinhas aproximam-se em termos de eficiência

	Sistemas de transporte na fábrica						
		Transporte de:					
	Transportador oscilante	Material abrasivo		-Fluxo uniforme -Transporte de materiais abrasivos (que façam muito pó ou que tenham grande tendência para fazer grumos e quebrar) -Operam em silencio -Baixa energia de funcionamento -Débito muito lento			
Horizontal / inclinado	Produtos frágois (que se		Vantagens Desvantagens	-Usado principalmente em terminais portuários e para transporte de sacos -Ideal para produtos frágeis; -elevada eficiência -poucos problemas de contaminação -Os tapetes conseguem transportar os materiais em grandes distâncias a velocidades muito elevadas -Produção de poeira (ao ar livre) -Manutenção de cintas rigorosa			
	Transportadores de arrasto (redler)	material está parado		-Saída única -Saídas múltiplas; -Baixo custo de aquisição e manutenção -Sem problemas de fricção -Permite sempre contaminação			
Horizontal,	arrasto (redier)	(redler) em silos	Desvantagens	-Capacidade de carga pouco flexível -Custo de implantação (mais alto do que em hélice) -Má movimentação de materiais pegajosos (matérias com por exemplo de mais de 10% de incorporação de gordura)			
inclinado e vertical	inclinado e vertical	Alimentador de máquinas e extrator de silos	Vantagens	-Custo moderado; -Boa fiabilidade -Manutenção			
	Sem fim		Desvantagens	-Baixa capacidade -Perda de rendimento em elevações -Quebra de partículas por fricção -Abrasão das paredes do transportador			
	Transportadores pneumáticos	Usado para descargas de navios	Vantagens	-Insuflação para grandes quantidades -Ventilação para pequenas quantidades -Grande flexibilidade -Ocupam pouco espaço			
		Havios	Desvantagens	-Alto consumo de energia -Ruido -Quebra de grânulos			
	Transporte por gravidade		Vantagens	-Não consomem energia -Declives e pontos de mudança de direção (eventual ponto de acumulação/retenção de material) exigem conceção apropriada (para ter a certeza que existe fluidez apropriada do material).			
Na vertical	Elevadores de noras	Vantage Elevadores de noras		-Transporte muito eficiente e muito flexívelDébito variável -Carregamento no ramo ascendente ou descendente -Descarga por gravidade em curva -Ocupam pouco espaço; -Consome pouca energia			
			Desvantagens	-Custo e manutenção -Zonas inferiores suscetíveis de contaminação -Suscetibilidade a explosões			

Armazenamento de matérias-primas a granel						
	Vantagens	Desvantagens				
	-Boa proteção contra pestes					
	-Carregamento e descarregamento automáticos	-Alto custo				
Silos de Metal	-Fácil limpeza	-Fraco isolamento contra temperatura ambiental (condensação)				
Silos de Metal	-Simples controlo de temperatura	-Quando aumenta a temperatura a matéria-prima pode não estar boa;				
	-Fácil arejamento	-A tampa não sela (efeito chaminé)				
	-Completamente móvel (montam-se e desmontam-se)					
	-Bom isolamento contra temperatura exterior					
Cilca da Cimanta	-Carregamento e descarregamento automáticos	-Alto custo				
Silos de Cimento	-Fácil limpeza	-Amovível				
	-Simples controlo de temperatura					
		-Carregamento e descarregamento pouco eficientes				
A	-Baixo custo	-Má proteção contra pestes				
Armazém	-Flexível uso de espaço	-Difícil limpeza = não existe, o que gera restos que vão estragar as novas MP				
		-Difícil controlo de temperatura				

	Sistemas de moenda					
	Vantagens	Desvantagens				
Pré- moenda	 Melhor aproveitamento dos moinhos Melhor gestão do tempo O tamanho das partículas pode ser controlado Funcionamento simultâneo de vários moinhos Potência elétrica instalada é inferior Micronutrientes vão diretamente para a misturadora 	 Exige um maior número de células intermédias Menor flexibilidade no uso de matérias-primas Na trituração de matérias-primas mais abrasivas, o moinho sofre um desgaste mais acentuado 				
Pós moenda	 Maior flexibilidade no uso de matérias-primas Facilita a moagem de matérias-primas difíceis de moer Permite uma moenda fina com uma produtividade aceitável Evita a existência de células de armazenamento intermédias 	 Afeta diretamente a capacidade produtiva da fábrica Requer instalação de uma maior potência elétrica O transporte de misturas pode ser mais difícil que o de ingredientes individuais A moenda é o moinho 				

	Moinhos						
	Vantagens	Desvantagens					
De martelos	 Flexível no tamanho de partículas desejado Trabalha com ingredientes friáveis e fibras Baixo custo de investimento Baixo custo de manutenção Regulação simples 	 Uso de energia pouco eficiente Gera algum calor Gera ruído e pó Tamanho das partículas menos uniforme 					
De rolo	 Principal: processo mais amigo da matéria-prima e partículas mais homogéneas Uso de energia muito eficiente Uniformidade granulométrica do triturado Gera pouco ruído e pouco pó 	 Difícil processamento de fibras (bagaço de girassol, casca de aveia) Custo inicial elevado Custo de manutenção elevado Menos práticos, havendo um difícil controlo do tamanho da partícula Dificuldade em alterar a dimensão da moenda 					